Assoc. Prof. Nelson Uhan

Lesson 1. Three Dimensional Space

1 Today...

- 3D rectangular coordinate system
- Graphing equations in 3D
- Distance formula in 3D
- Equation for a sphere

2 3D rectangular coordinate system

- How do we locate points in space?
- 3 mutually perpendicular coordinate axes through origin O :

- 3 coordinate planes

- The coordinate planes divide space into 8 octants
- The first octant is the octant with positive axes
- Any point P in space can be represented as an ordered triple (a, b, c) :

- (a, b, c) are the rectangular coordinates of P (also known as Cartesian coordinates)
- a is called the x-coordinate of P
- b is called the y-coordinate of P
$\circ c$ is called the z-coordinate of P
- Recall we often refer to the two-dimensional plane as \mathbb{R}^{2}
- We often refer to three-dimensional space as \mathbb{R}^{3}

Example 1. Plot $P(3,-2,2)$.

Example 2. Find the distance from $P(3,-2,2)$ to (a) the $x y$-plane, and (b) the $x z$-plane, and (c) the x-axis.

3 Graphing equations in 3D

- Recall that in 2D: the graph of an equation in x and y is a curve in \mathbb{R}^{2}
- In 3D: an equation in x, y, and z is a surface in \mathbb{R}^{3}

Example 3. Which points satisfy $y=1$ in \mathbb{R}^{3} ?

Example 4. Which points satisfy $y=x^{2}, z=0$ in \mathbb{R}^{3} ?

Example 5. Which points satisfy $y=x^{2}$ in \mathbb{R}^{3} ?

4 Distance formula in 3D

- Recall the 2D distance formula: the distance between two points $P_{1}\left(x_{1}, y_{1}\right)$ and $P_{2}\left(x_{2}, y_{2}\right)$ in \mathbb{R}^{2} is

$$
\left|P_{1} P_{2}\right|=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}
$$

- The distance between two points $P_{1}\left(x_{1}, y_{1}, z_{1}\right)$ and $P_{2}\left(x_{2}, y_{2}, z_{2}\right)$ in \mathbb{R}^{3} is
\square

Example 6. What is the distance from the point $P(2,-1,0)$ and $Q(4,1,1)$?

- A sphere is the set of all points $P(x, y, z)$ whose distance from a center $C(h, k, l)$ is radius r, or
- The standard equation for a sphere with radius r and center (h, k, l) is

Example 7. What region in \mathbb{R}^{3} is represented by the following inequalities?

$$
1 \leq x^{2}+y^{2}+z^{2} \leq 4 \quad z \leq 0
$$

